The Sunyaev-Zel'dovich effect at 5": RX J1347.5-1145 imaged by ALMA

滝沢元和 山形大宇宙グループ談話会(2017.5.12)

T. Kitayama, S. Ueda, S. Takakuwa, T. Tsutsumi, E. Komatsu, T. Akahori,
D. Iono, T. Izumi, R. Kawabe, K. Kohno, H. Matsuo, N. Ota, Y. Suto,
M. Takizawa, & K. Yoshikawa
PASJ, 2016, 68, 88

Introduction

Yoshikawa et al. (2003)

標準的な構造形成理論によ れば、宇宙の構造は小さなも のから大きなものへ(bottom up scenario)

- Cold Dark Matter
 - Dark Halo, filaments
- バリオン(CDMの重カポテン シャルで加熱)
 - 一部は冷えて銀河、星へ
 - 大部分は高温ガスに (X-ray, Sunaev-Zel'dovich効 果)

Sunyaev-Zel'dovich 効果

銀河団などの高温ガスによる逆コンプトン散乱で Cosmic Microwave Background (CMB) のスペクトルが変形。 •ミリ波帯(R-J側)ではdecrement •サブミリ波帯(Wein側)ではincrement

Thermal, Kinematic, and others

- Thermal SZ: Maxwell分布をした熱電子による CMBスペクトルの変形。(Sunyaev&Zel'dvich 1972)
- Non-thermal SZ: 非熱的電子による (Blasi et al. 2000, Colafrancesco et al. 2003など)
 Grad-T SZ: 熱伝導による (Hattori&Okabe 2005)

SZ効果:波長依存性

Thermal SZ

$$\begin{array}{l} \Delta I_{th} = i_0 yg(x) \\ \textbf{f=f=l} \\ i_0 = 2(kT_{cmb})^3 / (hc)^2 \\ x = (h\nu/kT_{cmb}) \end{array}$$

$$y = \int \left(\frac{kT_e}{mc^2}\right) n_e \sigma_T dl,$$
$$g(x) = \frac{x^4 e^x}{(e^x - 1)^2} \left[\frac{x(e^x + 1)}{e^x - 1} - 4\right],$$

Kinematic SZ $\Delta I_{th} = -i_0 h(x) (V_r/c) \tau$ *t*-tだし、V_rは遠ざかる時を正とし、 $\tau = \sigma_T \int n_e dl$ $h(x) = \frac{x^4 e^x}{(e^x - 1)^2},$

Black body からのずれ具合

多波長観測することで原理的には両者は分離可能。

Thermal vs Kinematic SZ

Dashed: best fit thermal SZ Dotted: best fit kinematic SZ Solid: thermal+kinematic

The measured SZ spectrum of A2163 (Holzapfel et al 1997; LaRoque et al. 2002)

(Thermal) SZ vs X-ray

I_X ∝∫n_e² T_e ^{1/2} dl I_{SZ}∝∫n_e T_e dl X線は密度構造に、SZは温度構造に よりsensitive。

I_X ∝ (1+z)⁻⁴ I_{SZ}∝(1+z)⁰ (U_{CMB} ∝ (1+z)⁴なため) high z object にはSZが相対的に有利

SZE vs X-ray maps of RX J1347.5-1145

ミリ波(decrement)

150GHz, NOBA on Nobeyama 45m 13" beam, 15" smoothing (Komatsu et al. 2001) Contours: Chandra X-ray (Allen et al. 2002)

1.7mJy/beam 0.8mJy/beam 0.0mJy/beam -0.8mJy/beam -1.7mJy/beam 2.5mJy/beam

サブミリ波(increment)

X線(等高線)とSZ(カラー)で 空間分布が違うように見える。

RXJ1347.5-1145

最もL_xの大きい銀河団の一つ XとSZでimageの形態が異なる 30keV近い高温ガスの存在?

中心に電波銀河(SZ観測には 邪魔者)

z=0.451

1"は4.04 h₁₀₀⁻¹kpcに相当

10

Energy [keV]

すざくによる広帯域X線ス ペクトル (Ota et al. 2008)

Atacama Large Millimeter/Submillimeter Array (ALMA)

ミリ波・サブミリ波で最高の感度・分解能を誇る電波干渉計
 12m-Array(50台)、7m-Array(12台+12mを4台)
 2011年より初期運用開始、2013年より本格運用
 東アジア、米、欧、チリによる国際共同プロジェクト

ALMAによるSZ 観測の 意義

■高空間分解能

- 超高温(>10keV)なICM中の衝撃波の良いプ ローブ(c.f. 硬X線観測)
- ▶ 点源によるコンタミは大幅に改善

■ 干渉計

- 」銀河団のような拡がったソースの観測はなにかと面倒。
- 見かけのサイズがコンパクトな銀河団が好都合

ID	Array	Date	Number of antennas	On-source time [min]
EB7-1	7-m	2014-08-16	10	39.43
EB7-2	7 - m	2014-08-17	10	39.43
EB7-3	7 - m	2014-08-17	10	19.97
EB7-4	7 - m	2014-08-17	9	39.43
EB7-5	7 - m	2014-12-06	7	39.43
EB7-6	7 - m	2014-12-11	9	39.43
EB7-7	7 - m	2014-12-15	8	39.43
EB7-8	7 - m	2014-12-28	8	39.43
EB7-9	7 - m	2014-12-28	8	39.43
EB12-1	12-m	2014-12-15	41	34.13
EB12-2	12-m	2014-12-29	39	40.42
EB12-3	12-m	2014-12-30	39	40.42
EB12-4	12-m	2015-01-04	40	40.42

Table 2. Parameters of observed maps.

Parameters	12-m array	7-m array
Central frequency	92 GHz	92 GHz
Band width	7.5 GHz	7.5 GHz
Primary beam FWHM at the central frequency	62″	107"
Number of pointings	7	7
Baseline coverage	3.5–116 kλ	2.1–16.3 kλ
Weighting	natural	natural
Synthesized beam FWHMs	$4.1^{''} \times 2.4^{''}$	$20\%5 \times 11\%1$
Synthesized beam position angle	84:1	88.1
Average 1σ noise	$0.012 \mathrm{mJybeam^{-1}}$	$0.083 \mathrm{mJybeam^{-1}}$

- 2014年8月-2015年1月にかけて、都合13回に分けて観測。
 - 12m-array ~155min
 - 7m-atrray ~335min
- Band3
 - 中心波長 92GHz
 - 帯域幅7.5GHz
- 合成ビームサイズ
 - 12m-array 4".1×2".4
 - 7m-array 20".5×11".1

干渉計の像合成

- 干渉計で得られる直接の観 測量(ビジビリティ)は、天球 面上のイメージのフーリエ 成分の一部。
- ビジビリティをフーリエ変換したもの(dirty map)はもとのイメージにはならない(フーリエ成分の一部しか使っていないため)。
- 合成ビーム(点源のdirty map)をdeconvolveしたイ メージを再構成する必要が ある。

Dirty Mapと点源の除去

12m-array, 7m-array それぞれについてuv データからdirty mapを 作成 中心に 点源 (AGN) 位置とfluxをfree parameter にした点源 モデルをuv空間上でfit したのち除去

合成Dirty-MapとDeconvolved map

12m-arrayと7m-array の両方のデータを用いて dirty-mapを作成
サイドローブが見えては いるが、中心AGNからず れてSZのsignalが見え てる。

 Multi-Scale CLEANで deconvolve。最終的に 5"の分解能

Right ascension

14

16

18

20

10

12

X-ray (Chandra) との比較(1)

- Canddra のアーカイブデータ (233.8ks)を解析
- BGDはX-ray peakから2'.5-3'.5の 同一視野内データを使用
- エネルギー範囲は0.4-7.0keVを使
- z, N_Hは文献値で固定してスペクト ル解析
- X線とSZでピークは約10"ずれてる
 - 0

[keV]

22

 SZのピーク付近に20keV程度の高 温成分がある。

Declination

カラー:疑似電子圧力

0.05

0.1

等高線:SZ

30.0

100 kpc/h

[keV cm⁻³(L/Mpc)^{-1/2}]

0.3

0.25

13:47:30.0

scension

0.2

0.15

X-ray (Chandra) との比較(2)

奥行きL一定とし、(エネルギー幅が せまいので)」、の温度依存性を無視 すると、以下のようにX線データから 擬似的に電子密度、温度の分布が 出せる。

$$I_{X} \sim n_{e}^{2}L$$

---> $n_{e} \sim I_{X}^{1/2} L^{1/2}$
 $P_{e} \sim n_{e} T_{e} \sim I_{X}^{1/2} T_{e} L^{1/2}$

- SZと疑似電子密度でピークは約10" ずれてる。
- SZと疑似電子圧力はだいたいあっている。

Simulated signal and noise

ミッシングフラックス の評価

 干渉計では大スケール の成分は失われてしまう (ミッシングフラックス)。

 Chandraのデータから SZのモデルイメージを作 って、それをALMAの simulatorに通してミッシ ングフラックスを評価

ミッシングフラックスの評価 (uv空間で)

- Input map とsimulated mapをuv空間上で比較
- 40秒角程度の成分まではとれている。それ以上の大スケールではは失われている。
- 5秒角以下でとれていないのは、分解能(smoothing)のせい

ミッシングフラックスの評価 (天球面上で)

 Input mapとsimulated mapの天球面上での強度 を比較。線形な関係でよく あらわされるのを確認。

•
$$I_{out} = c_1 I_{in} + c_0$$

 $c_1 = 0.88$

c₀=3.6µJyarcsec⁻²

■ C₁<1: コントラストの低下

c₀≠0: constant off-set

ミッシングフラックスの補正

カラー: Compton y-parameter 等高線:X-ray image (Chandra)

 前述の二つの方法(uv or 天球面)どちらで行っ ても大差はないことを確 認。

 最終的に得られたyparameter mapが左の よう。

$$y = \int \left(\frac{kT_e}{mc^2}\right) n_e \sigma_T dl,$$

Summary

- 銀河団RX J1347.5-1145をALMAのband3(92GHz)で観 測し5秒角(20h⁻¹kpc)分解能のSZ効果イメージを得た。
 - ALMAによるSZ効果観測の最初の例である。
 - SZ効果観測としてはこれまでで最も高空間分解能なものである。
- X線観測データとの比較をおこなった。
 - X線のピークとSZのピークが10秒角ずれていることを明らかにした。
 - X線データのみから得た疑似圧力mapとSZmapはよく一致した
- X線データを用いてミッシングフラックスの評価を行った。
- 見かけのサイズがコンパクトな銀河団のSZ効果観測においてALMAが非常に強力な装置であることを示せた。