

滝沢元和

### お品書き

- •銀河団磁場の観測的証拠
- •銀河団磁場の観測的決定方法
  - Faraday Rotation
  - シンクロトロン+逆コンプトン
- 乱流磁場を持った銀河団のファラデー回転測度のモデル計算
- ・まとめ

### Introduction: 銀河団





- 暗黒物質の重力ポテンシャル中に束縛された高温 ガス(T~10<sup>7-8</sup>K)と銀河のかたまり。
   宇宙で最大のビリアライズした天体 (R~Mpc, M~10<sup>14-15</sup>太陽質量)
   宇宙の構造形成の(観測可能な)現場
   プラズマ物理の実験場(理想的な無衝突プラズマ)
- 暗黒物質の実験場(重力レンズ、self-interacting dark matter など)

Observational Evidence of Intracluster Magnetic Field (1) : Radio Halos / Relics

#### Non-thermal radio emission from merging clusters of galaxies

synchrotron radio

 $\gamma \sim 10^4$  electrons + 0.1-10 $\mu$ G B

Hard X-ray will be emitted through Inverse compton with CMB



1RXS J0603.3+4214銀河団とToothbrush 電波レリック +電波ハロー。カラーがX線(0.5-8.0keV)で等高線が電波 (1.16-1.78GHz) Itahana, Takizawa et al. (2017) Observational Evidence of Intracluster Magnetic Field (2): Faraday Rotation

 Polarized plains of linear polarized radio wave rotate when propagating through the magnetized plasma.

• 
$$\Delta \theta = \text{RM } \lambda^2$$
  
 $\text{RM} = 0.81 \int_0^d n_e \boldsymbol{B} \cdot d\boldsymbol{r} \text{ [rad m}^{-2]}$ 

 Polarized radio sources observations in and behind clusters suggest random magnetic field structures.



Faraday rotation measure map of the radio sources in Abell 2255 Color: RM Contour: radio Govoni et al. 2006

# Radio relic in CIZA J2242.8+5301

aligned magnetic fields parallel to a shock front ?



Relic Rosat X-ray image (contours) Radio image (colors) Van Weeren et al. 2010



### 銀河団の磁場について

■銀河団内には数µG程度の乱れた磁場が存在

- ◆ シンクロトロン電波ハロー(レリック)
- Faraday rotation measure
- ◆ ただし、衝撃波付近などでは整った構造も??
- P<sub>B</sub>~0.01P<sub>th</sub> 重要じゃないのか?そんなことはない。
  - ◆ 流体不安定性の抑制
  - ◆ 熱伝導の抑制
  - ◆ 粒子加速(磁気乱流、衝撃波)

■磁場強度だけでなく構造も重要

### Faraday RotationとRotation Measure





# 磁場決定方法:Faraday Rotation(3) single scale model



### 磁場決定方法: シンクロトロンvs逆コンプトン





$$\frac{F_{\rm IC}}{F_{\rm syn}} = \frac{U_{\rm CMB}}{U_{\rm mag}} = \frac{U_{\rm CMB}}{B^2/8\pi},$$



### 磁場決定方法に関するコメント

### • Faraday Rotation

- •磁場構造についてのモデルが必要
- プラズマの密度で重みをかけた磁場強度
- ・備光電波源(主にAGN,Jet)がないとできない(CMBを使えばどこで もできる?SKAができればいくらでも?)。

### シンクロトロンvs逆コンプトン

- •磁場強度の体積平均(ただし高エネルギー電子があるところでの)
- ・逆コンプトンの観測はまだ(当分?)難しい。上限値のみがほとんど。
   (磁場だと下限値)

## 乱流磁場を持った銀河団モデル(1)

• ガス密度分布:ベータモデル
$$n_e(r) = n_{e,0} \left\{ 1 + \left(\frac{r}{r_c}\right)^2 \right\}^{-\frac{3}{2}\beta}$$

とりあえず典型的な以下の値で 以降の計算は行っている。

中心密度: n<sub>e,0</sub> = 0.001 cm<sup>-3</sup> コア半径:r<sub>c</sub> = 400 kpc ベータ:β = 0.6



### 乱流磁場を持った銀河団モデル(2)

 ベクトルポテンシャルからべき型パワースペクトルを持ったランダム ガウシアンの磁場を作るやり方

$$\begin{split} \tilde{A}_{x}(\mathbb{k}) &= Ae^{-i\phi} \\ & \& \mathsf{L}\mathsf{C}(A,\phi) \mathscr{E}\mathsf{V}\mathsf{F} \mathcal{O} \overset{}{\operatorname{max}} \mathscr{D} \overset{}{\operatorname{max}} \mathcal{D} \overset{}$$

ちなみに、これは $\operatorname{Re}(\tilde{A}_{x})$ および $\operatorname{Im}(\tilde{A}_{x})$ をそれぞれ独立なガウス分布 (平均0、分散 $|A_{k}|^{2}$ )で実現したものと同等(実装はこちら)。

## 乱流磁場を持った銀河団モデル(3)

- $\widetilde{\mathbb{B}}(\mathbb{k}) = -i\mathbb{k} \times \widetilde{\mathbb{A}}(\mathbb{k})$ としてFFTする と $\mathbb{B}(\mathbb{r})$ を得る。このとき、  $|B_k|^2 \propto k^{-n}, \quad n = \xi - 2$
- ガス密度との対応付け  $\langle B_{x,y,z}(r) \rangle \propto \{n_e(r)\}^{\gamma}$  ( $\gamma = 0.5$ )
  r < r で ( $R^2$ ) - 10 uC となるように相格
- $r \leq r_c$  で $\sqrt{\langle B^2 \rangle} = 1.0 \mu G$ となるように規格化
- ちなみにÃ(k)をFFTしてA(r)を得て、
   B(r) = ∇ × A(r)を差分で求めるやり方もある
   が、高周波数側のパワーが減ってしまう副作用がある。
- ただし∇・B(r) = 0の再現性は(ガス密度との 対応付けの影響がないので)こちらの方が優れる。



 $|A_k|^2 \propto k^{-5}$ から異なる方法で作った磁場の $|B_k|^2$ (本来なら $|B_k|^2 \propto k^{-3}$ となってほしい)

x(水色)は $\mathbb{B}(\mathbb{k}) = -i\mathbb{k} \times \widetilde{\mathbb{A}}(\mathbb{k})$ で、 +(紫)は $\mathbb{B}(\mathbb{r}) = \nabla \times \mathbb{A}(\mathbb{r})$ で作った



- •計算領域 (750×2 kpc)<sup>3</sup>
- •格子数 (256)<sup>3</sup>
- Δ*x* = 5.9 kpc (以上は以降共通)
- 右は  $|B_k|^2 \propto k^{-3}$  $\Lambda_{min} = 6.0 \text{ kpc}$  $\Lambda_{max} = 768.0 \text{ kpc}$ の場合

#### z = 0面での各種物理量および、RM = 812 $\int n_e B_z dz$



計算例:巾指数の違い $(|B_k|^2 \propto k^{-n})$ 



- RM = 812  $\int n_e B_z dz$ 
  - •べきをきつくすると、相対的に低波数(長波長)側の寄与が増加

計算例:最大or最小スケールの依存性



- RM =  $812 \int n_e B_z dz$
- べきは $|B_k|^2 \propto k^{-3}$ で共通だが、高波数(短波長)側および低波数(長波長)側にカットオフ。
- 確かにRMにも対応した構造が。

## RMの頻度分布

- *r* ≤ *r<sub>c</sub>*(= 400kpc)内 でのRMの頻度分布を 比較してみた。
- ベきがきつくなるにつ れてガウス分布から形 がずれてくる。r<sub>c</sub>より 大スケールの成分の寄 与が無視できなく、ラ ンダム性が薄れるため?



## 乱数初期値による違い

- $|B_k|^2 \propto k^{-3}$
- $\Lambda_{min} = 6.0 \text{ kpc}$
- $\Lambda_{max} = 768.0 \text{ kpc}$
- 乱数の初期値を変えて100
   回試行。
- *r < r<sub>c</sub>*でのRMの平均値および標準偏差の頻度分布
   (右図)
- < RM  $\geq$  -3.7 ± 74.6  $\sigma_{\rm RM}$  = 125.4 ± 25.6 (誤差は1シグマ)



シングルスケール モデルとの比較

- $r \leq r_c \ column \sqrt{\langle B^2 \rangle} = 1.0 \mu G$ 、異なった  $|B_k|^2$ のモデルから計算したRM map  $column \sigma_{RM}$ を求める。
- ・求めた $\sigma_{\rm RM}$ をシングルスケールモデ ルに適用して $\sqrt{\langle B^2 \rangle}$ を求めたらどれ くらい正しいか(間違うか)。
- 全体的に磁場を過大評価する傾向。

$$\sigma_{\rm RM} = \frac{KBn_0 r_{\rm c}^{1/2} \Lambda_{\rm B}^{1/2}}{(1 + r^2/r_{\rm c}^2)^{(6\beta - 1)/4}} \sqrt{\frac{\Gamma(3\beta - 0.5)}{\Gamma(3\beta)}},$$

| ( <i>n, A<sub>min</sub>,A<sub>max</sub></i> )<br>Aの単位はkpc | $\sigma_{ m RM}$ [rad m <sup>-2</sup> ] | $\sqrt{\langle B^2 \rangle} \left( \frac{\Lambda_B}{10 \mathrm{kpc}} \right)^{\frac{1}{2}} [\mu \mathrm{G}]$ |
|-----------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------|
| (2, 6.0, 768)                                             | 57.1 ± 4.7                              | $1.48 \pm 0.12$                                                                                              |
| (3, 6.0, 768)                                             | $125.4 \pm 25.6$                        | $3.26 \pm 0.67$                                                                                              |
| (4, 6.0, 768)                                             | $182.2 \pm 48.5$                        | 4.73 ± 1.25                                                                                                  |
| (3, 6.0, 76.8)                                            | 56.3 ± 1.8                              | $1.46 \pm 0.05$                                                                                              |
| (3, 60.0, 768)                                            | 162.1 ± 34.7                            | $4.21 \pm 0.90$                                                                                              |



- 銀河団ガスにはµG程度の磁場が存在し、基本的には乱流構造をしているが、 衝撃波近傍などで整った構造も見つかっている。
- 磁場は様々な物理過程(粒子加速、熱伝導の抑制、流体不安定性の抑制)な
   どで本質的な役割を果たす。
- 観測的にはファラデー回転測度、シンクロトロン放射と逆コンプトン散乱放射の比較、などから磁場の情報が得られる。
- 乱流磁場を持った銀河団の数値モデルを構築し、ファラデー回転測度mapを 計算した。
- 上記モデルをシングルスケール磁場モデルで解釈したときに、どの程度磁場 強度を正しく(or 間違えて)見積もるかを評価した。結果として過大評価 する傾向を確認した。