"toothbrush"銀河団1RXS J0603.3+4214 での粒子加速過程

滝沢元和 研究室談話会(**2024.6.7**)

Introduction

Yoshikawa et al. (2003)

- 標準的な構造形成理論によれば、宇宙の構造は小さなものから大きなものへ (bottom up scenario)
- Cold Dark Matter
 - Dark Halo, filaments
- ・バリオン (CDMの重力ポテンシャルで 加熱)
 - 一部は冷えて銀河、星へ
 - 大部分は高温ガスに(X-ray, SZ効果)

Introduction: 銀河団

- 暗黒物質の重力ポテンシャル中に束縛された高温 ガス(*n*~10⁻³ cm⁻³, kT~keV)と銀河のかたまり。
 宇宙で最大のビリアライズした天体 (R ~Mpc, M ~10¹⁴⁻¹⁵太陽質量)
 宇宙の構造形成の(観測可能な)現場
 プラズマ物理の実験場(理想的な無衝突プラズマ)
- 暗黒物質の実験場(重力レンズ、self-interacting dark matter など)

電波観測でなにがわかるか(シンクロトロン放射の場合) 図はOzawa et al.(2015)から

Radio Halos / Relics

 Some merging galaxy clusters have diffuse non-thermal radio emitting regions.

($E_e \sim GeV$, $B \sim \mu G$)

- Radio halos and (mini halos)
 - Located near the center, similar to X-ray morphology
 - Associated with ICM turbulence???
- Radio relics
 - Located in the outskirts, arc-like shape,
 - Likely associated with ICM shocks?

CIZA J2242.8+5301 with Radio Relic Rosat X-ray image (contours) Radio image (colors) Van Weeren et al. 2010

乱流加速(Fermi二次加速)

- オリジナルのFermiのアイデアはラ ンダムに運動する散乱体による多 重散乱。
- 正面衝突の頻度のほうが追突より も多くなるために粒子加速がおき る。
- 散乱体として電磁流体乱流中での 各種波動との(共鳴)散乱などが 考えられているが諸説ある。
- •加速効率はあまりよくない。
- エネルギースペクトルの予測は非 自明。

衝撃波統計加速(Fermi一次加速)

- 衝撃波静止系で見るとお互いに近づく 流れ。何回も反射されることで粒子が 加速される。
 - (近づきつつある2つの壁の間で何度も 跳ね返されるテニスボールみたいなも の)
- "反射体"は磁場の乱れやプラズマ波動など
- ただし、一定の割合で逃げていき、そうすると加速は終了
- 結果としてべき型のエネルギー分布に。

$$\frac{\mathrm{d}N}{\mathrm{d}p} \propto p^{-s}, s = \frac{u_1/u_2 + 2}{u_1/u_2 - 1}$$

Mach Number Estimation of Shocks at Radio Relics : Two Methods

Radio Spectral index map of the relic in CIZA J2242.8+5301 (Van Weeren et al. 2010) $F_v \propto v^{-\alpha} \longrightarrow N(E_e) \propto E_e^{-(2\alpha+1)}$ With a (simple) diffusive shock accerelation model,

 $M^2 = (2 \alpha + 2)/(2 \alpha - 2)$

Temperature Profile across the relic in CIZA J2242.8+5301 (Akamatsu & Kawahara 2013) With the RH relation ----> $T_{post}/T_{pre}=(5M^4+14M^2-3)/(16M^2)$

Radio Relics: Mach Number consistency???

- Akamatsu & Kawahara (2013) suggests that M_x and M_{radio} seem to be consistent with each other.
- A simple model of diffusive shock acceleration is correct?
- However, sample size is obviously too small to say something definite.

M_{X,kT} vs M_{radio} Akamatsu&Kawahara (2013)

X-ray surface brightness profile across the relic (Ogrean et al. 2013) $M_X=1.7^{+0.41}_{-0.42}$ Shock is shifted outward from the relic outer edge????

toothbrush-relic: temperature profile across the relic (Itahana et al. 2015)

$$\frac{T_2}{T_1} = \frac{5M_X^4 + 14M_X^2 - 3}{16M_X^2}$$

- Obtained Mach number 1.50^{+0.37+0.25+0.14} 27-0.24-0.15
 - Similar to the XMM results(Ogrean et al. 2013, surface brightness analysis), but more robust for uncertanities of line-of-sight structures.
- Inconsistent with radio results.

After our work,,,(van Weeren et al. 2016)

• New radio data (LOFAR+VLA) show steeper spectra.

$$\alpha = -0.8 \pm 0.1$$

 $\mathcal{M} = 2.8^{+0.5}_{-0.3},$

 Chandra X-ray data indicate shock is just at the outer edge of the relic, maybe XMM result is incorrect.

 $\mathcal{M}\approx$ 1.2, with an upper limit of $\mathcal{M}\approx$ 1.5]

(Rajpurohit et al. 2018)

- VLAでさらに追観測(1-2GHz)。
- レリックからハローにかけての詳細な イメージ&スペクトル
- レリックのスペクトルは若干フラットに -0.70 ≤ α ≤ -0.80, M = 3.78⁺⁰³_{-0.2}
- ハローでは巾はほぼ一定 $\alpha = -1.16^{+0.5}_{-0.5}$
- レリックの背後でsteepになったあと、
 連結領域で再びフラットになって
 ハローにつながる。
- 衝撃波加速

→逆コンプトン+シンクロトロン冷却
 → 乱流加速??

- •HST(高空間分解能)とSubaru(広視野)のデータを使って弱重力レンズ解析。
- •南北のメインの質量ピーク(質量比3:1)+小規模なピーク2つ。
- 南の質量ピークはX線ピークより南にずれている。
- ・ 質量分布と銀河の分布はよく一致。

XRISM

Table 1 Key parameters and performance requirement of the XRISM observatory (Tashiro et al. 2018)

- 高エネルギー分解能X線観測を主目的とした
 日米共同開発の衛星
- 2023年9月7日打ち上げ、同年10月first light
- ゲートバルブが開かない不具合が発生 (Resolveの2keV以下はほぼアウト)
- 現在PV観測中。GO1の公募が4月に締め切られ て選考中。

Γ	Parameters	Resolve	Xtend
	X-ray mirrors	Conically approximated Wolter I optics (203 nested)	
	Focal length	5.6 m	
	Angular resolution	\leq 1.7 arcmin (HPD ^{*1})	
	Detector technology	X-ray micro- calorimeter	X-ray CCD
	Effective area	≥210 cm² @ 6keV, ≥160 cm² @ 1keV	≥300 cm² @ 6 keV
	Field of View	\geq 2.9 x 2.9 arcmin ²	\geq 30 x 30 arcmin ²
	Energy range	0.3 – 12 keV	0.4 – 12 keV
	Absolute energy scale	≤ 2 eV	-
	Energy resolution	≤ 7 eV FWHM @ 6keV	≤ 250 eV @ 6keV (EOL)
	Non X-ray background	≤ 2 x 10 ⁻³ c/s/keV/array	\leq 1 x 10 ⁻⁶ c/s/keV/arcmin ² (in 5– 10 keV)
	Time tagging accuracy	≤ 1 ms	-
*1 Half Power Diameter			

CCDとの比較

- 超新星残骸N132Dのスペ クトル。
- 白色で示したスペクトルは
 Resolveで取得されたもの。
- ・灰色で示したスペクトルは
 Suzaku(CCD)で取得された
 もの(Bamba et al., 2018)。
- ・背景の画像はXtendによる
 X線イメージ。

まとめ

- 銀河団にはひろがった非熱的電波放射領域(radio halo, radio relic, radio mini halo)を持つものがある。
- Radio haloとmini haloについては乱流加速が、radio relicについては 衝撃波加速が有望な粒子加速過程として考えられている。
- 銀河団1RXS J0603.3+4214は特異な形状をした"toothbrush"電波レリック と電波ハローを持つ。
- "toothbrush" 電波レリックでは電波とX線から決めた衝撃波のマッハ数が一致しない問題がある。
- "toothbrush"電波レリックから電波ハローにかけての電波の巾指数分布 から、衝撃波で加速された粒子が冷却した後に乱流で再加速されてい ることが示唆される。
- XRISM GO1に乱流の測定を主目的とした1RXS J0603.3+4214の観測を提案中。